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Chapter 2. Electronic States 
Notes: 
• Most of the material presented in this chapter is taken from Bunker and Jensen 

(2005), Chap. 3, and Bunker and Jensen (1998), Chap. 9. 

2.1 The Born-Oppenheimer Approximation 
Before attempting to solve the Schrödinger equation with the rovibronic Hamiltonian 
H
rve

, it will be to our advantage to make a few simplifications. First is our realization 
that the motion of the electrons can be separated from that of the nuclei. This is to be 
expected because of the significantly lower mass of the electrons. We can therefore 
imagine that as the nuclei are moving around, the electron will be adjusting themselves 
on a much shorter time scale (almost instantaneously as far as the nuclei are concerned). 
This is the idea at the centre of the so-called Born-Oppenheimer approximation. 
To proceed with this approximation, we introduce a new space-fixed coordinate system 
!,",#( )  that has its axes parallel to that of X,Y ,Z( ) , which was defined earlier and had 

its origin at the molecular centre of mass. The only difference between the two systems is 
that !,",#( )  has its origin at the nuclear centre of mass. This difference in the location of 
the origin is important as it relates the motion of the electrons to the position of the 
nuclei. This is an essential condition for the separation of the terms associated to the 
kinetic energy of the electrons in the Hamiltonian. Let us now make this change of 
coordinates. From their definitions, the two aforementioned sets of coordinates are 
related as follows 
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we can write (taking into account the centre of mass of the molecule) 
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with similar relations for the other directions. By insertion into the first of equations (2.1) 
we have 
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with similar relations for !

i
 and "

i
, and where !

er
 is a Kronecker delta that will equal 

one only when the index r  labels an electron. Using the chain rule, we can write that 
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where r ! 1 , and 
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where r, s ! 1 . From this last equation we can calculate  
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and 
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where n = l ! N  is the number of electrons. We already know from equation (1.119)  
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that the equation from the rovibronic Hamiltonian includes terms proportional to 
equations (2.6) and (2.7). We therefore add these two equations to find  
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Substituting this result into equation (2.8), we write for the Hamiltonian 
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with this time 
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In the last of equations (2.11) R

N
 and r

e
 denote the sets of nuclear and electronic 

coordinates, respectively. We can furthermore break the potential energy into three terms 
such that 
 
 V R

N
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e( ) = Vee re( ) +VNN RN( ) +VNe RN

,r
e( ),  (2.13) 

 
where the different terms on the right hand side are for the separate summations of 
electron-electron, nucleus-nucleus, and nucleus-electron electrostatic potential energies, 
respectively.  
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When applying the Born-Oppenheimer approximation, we are assuming that the electrons 
are unaffected by the motion of the nuclei, i.e., we consider the nuclei as being stationary. 
This is equivalent to setting T̂

N
= 0  in equation (2.10). It is also appropriate to neglect the 

nucleus-nucleus potential energy term (i.e., V
NN

) in equation (2.13), since it will not 
affect the behavior of the electrons in any way. Finally, we can bring one further 
approximation to the rovibronic Hamiltonian. Close examination of the first of equations 
(2.11) concerning the electronic kinetic energy reveals that the second term on the right 
hand side is much smaller than the first, since it is inversely proportional to the total 
nuclear mass (as opposed to the electron mass). In fact, it is common to write 
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As stated above, within the Born-Oppenheimer approximation we assume that 
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0 , and the time-independent Schrödinger equation for the electronic states of the 
molecule becomes 
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where the nuclei coordinates R

N
 are held constant, and n  corresponds to the successive 

electronic states (
 
n = 1,2,… ) pertaining to the nuclear configuration R

N
. That is to say 

that the both the electronic wave functions !
elec,n

 and energies V
elec,n

 are dependent on 
the nuclear arrangement.  
We could have proceeded along a different route by recognizing that the Born-
Oppenheimer approximation is equivalent to saying that the (approximate) rovibronic 
wave function !

rve,nj

0  is expressed as the product of the electronic wave function !
elec,n

 
and the rotation-vibration wave function !

rv,nj  
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where the indices n  and j  (

 
n, j = 1,2,… ) relate to the particular electronic and rotation-

vibration states, respectively. Obviously, we must realize that although the nuclei 
coordinates R

N
 are assumed constant in !

elec,n
, they are certainly allowed to vary in 

!
rv,nj . The Schrödinger equation is then 
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or 
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with E

rve,nj

0  the eigenvalue when the molecule is in the electronic state n  and rotation-
vibration state j . The last line of equation (2.18) suggests that we can define a new 
rotation-vibration Schrödinger equation, which can be written as 
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It is therefore apparent that the potential energy for the nuclear rotation-vibration 
Hamiltonian is V

NN
+V

elec,n( )  and includes a contribution from the electronic state through 
the presence of V

elec,n
. It is customary to rewrite things so that the zero energy for the 

rotation-vibration equation, in a given electronic state, is the minimum value of 
V
NN

+V
elec,n( ) , which is usually called the electronic energy E

elec,n
. Our molecular 

problem is then rewritten with two Schrödinger equations: one determining the electronic 
states and another the nuclear (rotation-vibration) states 
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2.2 Molecular Structure 
Although our goal is to use the a priori known structure of a molecule to explain its 
spectroscopy, it is important to have a basic understanding of how and why it acquired its 
configuration. This will also be important for determining the symmetry of the electronic 
wave functions later on. In what follows, we therefore introduce elementary concepts 
concerning molecular structure in general. Our treatment will, however, stay at a 
rudimentary level, as this aspect of molecular quantum mechanics is a field of its own 
and a thorough study would bring us well beyond the scope of this course. 

2.2.1 Spin and the Pauli Exclusion Principle 
Every elementary particle has associated to it an intrinsic angular momentum called spin. 
For an electron, the spin operator and its projection on the space-fixed Z-axis  are 
denoted by ŝ and ŝ

Z
. For a nucleus we use î  and î

Z
. The total electronic and nuclei spins 

for a molecule are expressed using the capitalized operators Ŝ and Ŝ
Z

 and Î and Î
Z

, 
respectively. Particles with half-integer and integer spins (including zero) are 
correspondingly called fermions and bosons. The electron, which has a one-half spin, is 
a fermion, whereas nuclei can be either fermions or bosons. It is important to realize that 
there is no classical analog to the quantum mechanical spin, and it can only be explained 
through the unification of quantum mechanics and special relativity. 
The most important implications of the presence of spin for the states and behavior of 
atoms and molecules are embodied in the so-called Pauli Principle. Although Pauli 
initially intended it for electrons, it can be given a more general form as follows 
 
The total wave function (including spins) of a quantum mechanical system must be 
antisymmetric under the interchange of any pair of identical fermions and symmetric 
under the interchange of any pair of identical bosons.  
 
The concept of the symmetry of a wave function can be explained by considering the 
case of a system composed of two electrons.  
 
Example 
 
As mentioned above, the electron is a one-half spin particle, and its spin operator has two 
eigenvalues and eigenvectors. That is, if we denote these eigenvectors by !  and "  
then 
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and 
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Note that we have the usual relation 

 
m

s
= s !1,…, s +1, with s = 1 2  in this case. 

If we are dealing with two electrons, then we write the corresponding eigenvectors as 
! i( )  and " i( ) , with i = 1,2  depending on the electron. When combining the spin 

states of the electrons, it is possible to build the following four new states 
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Alternatively, we could express these same states using the total spin of the system 
Ŝ = ŝ

1
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2
 and Ŝ

Z
 (defined in the same way). Since Ŝ

Z
 can have the set of eigenvalues 

m
S
= !1,0,1  because of the possible orientations of the electrons, the total spin must 

therefore be allowed to take the values S = 0 and 1 , and we can write  
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It is a general quantum mechanical result that the combination of two angular momenta 
(not just spins) operators of values, say, j

1
 and j

2
 will yield a total angular momentum J  

that can take the values 
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. But since equations (2.25) and (2.26) are 

both complete sets of eigenvectors, then they must be linearly related. Because the set 
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S{ }  must obey relations similar to equations (2.23), it can be shown that 
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If we now interchange the spins of the electrons, which has the same effect as exchanging 
the labels 1 and 2 in equations (2.27), we find that 
 

 

!
"
2,1( ) = " !

"
1,2( )

!
+

"1( )
2,1( ) = !

+

"1( )
1,2( )

!
+

0( )
2,1( ) = !

+

0( )
1,2( )

!
+

+1( )
2,1( ) = !

+

+1( )
1,2( ) .

 (2.28) 

 
From this result, we say that !

"
 and !

+

mS( )  are respectively antisymmetric and 

symmetric with respect to the interchange of the electrons (hence their corresponding 
subscripts). It is commonly said that !

"
 is a singlet state, while !

+

mS( ){ }  form a set of 

triplet states. 
It is important to realize that the Pauli principle applies to the total wave function of this 
two-electron system, not only the spin functions specified in equations (2.27). More 
precisely, there is also a set of symmetric/antisymmetric vectors !

±{ }  specifying the 
orbital part of the total wave function, which must be combined to the spin states to 
completely define the system (for example, !

±
r( ) = r !

±
 would specify the spatial 

state of the system). That is, if we write the total vector of the system as 
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then it is to this vector that the Pauli principle applies to, not to 

 
!
!

 or "
±

 taken 

separately. According to the Pauli principle, the vector !"  is therefore antisymmetric. 
Let us now focus on one particular vector, say 
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where !" 1,2( )  must be antisymmetric since ! +

+1( )
1,2( )  is symmetric. Just as was done 

for the definition of !
"
1,2( )  in equations (2.27), the orbital vector !" 1,2( )  could also 

be expressed with 
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1
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a 1( ) b 2( ) " b 1( ) a 2( )#$ %&,  (2.31) 

 
with a  and b  two orbital wave vectors. We see from equations (2.27) that the two 
electrons have exactly the same spin state (i.e., ! ), and if we further assume that 
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a = b  (i.e., the electrons share the same orbit), then !"

+1( )
1,2( ) = #" 1,2( ) = 0 . That 

is, we cannot have two electrons with the same spins in the same orbital. This leads to the 
more general Pauli Exclusion Principle 
 
Two identical fermions cannot occupy the same state. 
 
One can easily verify that if the electrons have different spins, then the spin state is 
specified by !

"
1,2( ) = " !

"
2,1( ) . It follows that the orbital vector must be symmetric 

(by the Pauli principle), and we can allow for the two electrons to share the exact same 
orbital. 

2.2.2 The Slater Determinant   
One simple prescription to ensure that the electronic wave vectors of a system composed 
of n  electrons are antisymmetric is to used the so-called Slater determinant defined as 
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where a row determines a given electron and a column a specific spin-orbital vector !

i
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For example, the Slater determinant for the previous example of a two-electron system 
sharing the same orbital a  is 
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It should be clear that this wave vector is antisymmetric, and that if two electrons share 
the same orbital, then they must have opposite spins. 

2.2.3 Bonding and Anti-bonding Orbitals 
The determination of a complete set of orthonormal orbitals for an arbitrary molecule is a 
very complicated problem that cannot be solved analytically (except for some simple 
cases such as the H

2

+  ion). It is therefore often the custom to use atomic orbitals (AO) and 
their linear combinations (LCAO) as a starting point for, or as an approximation to, true 
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molecular orbitals (MO). Consider for example the case of the hydrogen molecule in its 
electronic ground state. The Hamiltonian for this system is 
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with the one-electron Hamiltonian defined with 
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and R

i!
 the distance from electron i  and proton ! , r

12
 the distance between the 

electrons, and R  the distance between the two protons. In accordance with the Born-
Oppenheimer approximation we do not consider the last (proton-proton interaction) term 
on the right hand side of equation (2.34) when determining the electronic state on the 
system. Moreover, we will deliberately neglect the third term of the same equation in 
order to simplify the analysis as much as possible. With these approximations, we can 
deal with the electrons independently. 
For the first electron (i.e., i = 1 ), the first two terms on the right hand side of equation 
(2.35) correspond to the Hamiltonian of the hydrogen atom. We can therefore write 
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where !

1s
H
1( )  is the ket associated with the 1s orbital (i.e., the ground state) for the 

electron of the equivalent hydrogen atom centered at the position of the first proton (H
1
), 

and the energy is 
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A similar equation can be written for the same electron with an orbital !

1s
H
2( )  

centered on the second proton (if we consider instead the first and last terms on the right 
hand side of equation (2.35)). If we use these two AOs as the basis for our molecule, then 
the one-electron Hamiltonian matrix can be written as  
 

 ĥ
1
=

W !Q

!Q W

"

#
$

%

&
',  (2.38) 

 
with 
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since r !

1s
H
1( )  and r !

1s
H
2( )  are both real and positive (in fact, these wave 

functions only have a radial dependency). Diagonalizing matrix (2.38), as was shown in 
section 1.4, we find that the eigenvectors are 
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with associated energies 
 

 
E =W !Q

E
*
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The vectors (2.40) are the MOs associated with the first electron. Obviously, they are also 
valid for the second electron, since both electrons have similar one-electron 
Hamiltonians. The lowest energy configuration is found to be at 2 W !Q( )  when both 
electrons are in the !  state. Since this value for the energy is less than that for two non-
interacting hydrogen atoms (i.e., 2W ! 2E

1
), then the two atoms will have a strong 

tendency to join and form a molecule with each electron occupying this MO (with one in 
the spin state !  and the other in the spin state ! , as dictated by the Pauli exclusion 
principle). The !  MO is thus called a bonding orbital. On the other hand, the highest 

energy configuration (i.e., 2 W +Q( ) ) is obtained if both electrons are in the ! *  state 
(again with opposite spins). But since this energy level is higher than that for two non-
interacting hydrogen atoms, then such atoms will be less likely to form a bond. The ! *  
MO is thus called an anti-bonding orbital. In spite of their name, one should not assume 
that anti-bonding orbitals couldn’t be occupied for a given molecule; they can.  
It must be emphasized that our treatment was highly simplified. One should (and usually 
does) find a way to take into account the electron-electron interaction term present in the 
Hamiltonian (i.e., equation (2.34)). This is usually accomplished using the so-called 
Hartree-Fock approximation (see Bunker and Jensen (2005) sections 3.3.2 to 3.3.4). 
Nevertheless, this example demonstrates how molecular bonds can be established 
between atoms. Although we started with AOs of equal energies, the same result applies 
in general, as long as the AOs are i) not too diffuse nor too compact and ii) their energies 
are not too far apart. Condition i) implies that it is usually sufficient to restrict oneself to 
the valence electrons when qualitatively investigating the approximate electronic 
configuration of a molecule in its ground state. 
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Figure 2-1 – The shapes of s, px , py , and pz  orbitals in (a), (b), (c), and (d), 
respectively. 

2.2.4 Hybridization 
In the previous example for the hydrogen molecule, we used two 1s orbitals to form the 
MOs. We are not restricted to these however. For example, the carbon atom in its ground 
state can be thought of as having four valence electrons that can occupy the 2s, 2px , 
2py , or 2pz  orbitals (shown in Figure 2-1). Since these four orbitals form a basis (they 
are also of the same energy level), any set of four other orbitals obtained from their linear 
combinations could also be used as bases. LCAOs obtained from these four AOs (or any 
other) are called hybrid orbitals. Here are three sets of LCAOs obtained this way. 

2.2.4.1 sp3  Hybridization 
Consider the initial set of wave function ! 2s ,! 2px

,! 2py
, and ! 2pz

 from which we build a 

new basis of sp3  orbitals as follows 
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Figure 2-2 - sp3  hybridization in (a), and the bonding of one ! j

(sp3 )  orbital from a carbon 
atom with a 1s orbital from a hydrogen atom in (b). 
The resulting wave functions (shown in Figure 2-2(a)) have cylindrical symmetry and, 
taken together can be thought of as tracing the structure of a tetrahedron. These orbitals 
can be used to explain the structure of the methane molecule (CH

4
). To do this, we 

imagine that the four hydrogen atoms each connect to the end of one ! j

(sp3 )  orbital through 
a 1s orbital, as shown in Figure 2-2(b). The combination of these two orbitals (i.e., one 
hydrogen 1s and one carbon sp3 ) will generate a pair of bonding and anti-bonding MOs. 
Each bonding MO will be filled with two electrons of opposite spins; one from a 
hydrogen atom and another from the valence shell of the carbon atom. All of the 
available electrons are accounted this way. 

2.2.4.2 sp2  Hybridization 
For this type of hybridization we keep the ! 2pz

 carbon orbital untouched, but we form a 

set of so-called sp2  orbitals as follows 
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The resulting wave functions are shown in Figure 2-3(a), with the three ! j

(sp2 )  orbitals 
occupying a single plane and the ! 2pz

 orbital unchanged. This set is well suited to 
explain the configuration of the ethylene molecule (C

2
H
4
). To do so, we imagine that 

each carbon atom bonds with a hydrogen atom along two of its ! j

(sp2 )  orbitals (exactly as 

was the case for the methane molecule above), while the two remaining sp2  orbitals (one 
for each carbon atom) will couple to give a pair of bonding and anti-bonding MOs called 
! -orbitals   
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Figure 2-3 – sp2  and sp hybridizations on (a) and (b), respectively. 
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and the two ! 2pz

 orbitals form a further pair of bonding and anti-bonding MOs called 
! -orbitals  
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The four remaining carbon electrons (two for each atom) will fill the bonding !  and "  
orbitals. We again account for all available electrons with this configuration (see Figure 
2-4). The combination of the !  and "  bonds form what is called a double bond. 
Because of this double bond the sp2  hybridization is favorable to planar molecular 
configurations. 

2.2.4.3 sp Hybridization 
In this case we keep both the ! 2py

 and ! 2pz
 orbitals untouched and form the remaining 

two AOs with  
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Figure 2-4 – The bonding of two sp2  hybrids to form a structure consistent with that of 
the ethylene molecule. 

The resulting basis is shown in Figure 2-3(b). This set of orbitals is well suited for linear 
molecular structures. Consider for example the acetylene molecule (C

2
H
2
). In this case, 

the two carbon atoms connect through a triple bond: one ! -bond , as in the first of 
equations (2.44), and two ! -bonds , as in the first of equations (2.45). One ! -bond  arises 
from the two ! 2py

 orbitals and the other from the ! 2pz
 orbitals. The hydrogen atoms then 

bond to the remaining !
j

(sp)  orbitals in the usual way, yielding the linear structure of 
acetylene (see Figure 2-5). 
 
 
 

 
Figure 2-5 - The bonding of two sp hybrids to form a structure consistent to that of the 
acetylene molecule. 


